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DIFFUSIOPHORESIS OF AN AEROSOL PARTICLE

IN A BINARY GAS MIXTURE

UDC 533.72+541.182V. G. Chernyak, S. A. Starikov, and S. A. Beresnev

The diffusion force and rate are calculated for the diffusiophoresis of a spherical particle in a binary
gas mixture by solving the gas-kinetic equations. Two schemes of diffusiophoresis are considered:
constant-pressure diffusion and diffusion of one mixture component through the other fixed compo-
nent. The problem is solved by the integral-momentum method at arbitrary Knudsen numbers. Diffuse
scattering of the gas molecules on the particle surface is assumed. The Lorentzian and Rayleigh mod-
els of a binary gas mixture are considered. The dependences of the force and rate of diffusiophoresis
on the Knudsen number and the other determining parameters are analyzed. The results obtained
are compared with well-known experimental data.

Introduction. Diffusiophoresis is the process in which a particle placed in a gas mixture of nonuniform
concentration is acted upon by a force which sets this particle in motion. For the free-molecular flow regime,
diffusiophoresis has been studied theoretically by direct calculation of the momentum transferred to the particle
by the gas molecules [1–4], and for the viscous regime, it has been studied by solving the Stokes equations with
the boundary condition of diffusion slip [5, 6] and by invoking methods of the thermodynamics of irreversible
processes [7, 8].

Brock [9] performed a study, primarily of a methodological character, in which the diffusiophoresis force and
rate were calculated for the first time at intermediate Knudsen numbers Kn = l/R0 (l is the mean free path of the
molecules and R0 is the particle radius).

Annis et al. [10] used the method of “giant molecules,” in which aerosol particles are treated as a gas-
mixture component. The expression obtained by this method for the diffusiophoresis rate includes a number of
adjustable parameters that follow from comparison of theory with experiment. The accuracy of this method is
not known a priori. The results obtained in [10] require theoretical verification based on solving the gas-kinetic
equation at arbitrary Knudsen numbers. It should be noted that until now there has not been adequate theory for
diffusiophoresis. Scanty experimental data [4, 11, 12] that can be used for a quantitative comparison with theoretical
results have been obtained primarily for intermediate Knudsen numbers.

The purpose of the present work is to develop a molecular-kinetic model for the diffusiophoresis of aerosols
in binary gas mixtures for arbitrary Kn.

1. Formulation of the Problem. We consider a spherical particle of radius R0 suspended in a binary
gas mixture with a uniform temperature a fixed concentration gradient |∇x1|∞ = −|∇x2|∞ directed along the OZ
axis collinearly to the hydrodynamic (mass-average) velocity V ∞ of the incoming flow (Fig. 1). We introduce the
following notation: xα = nα/n is the concentration of the species α (α = 1 for species 1 and 2 for species 2) and
n = n1 + n2 is the number density of the gas mixture.

The partial number densities of the components away from the particle are given by

nα∞ = nα

∣∣∣
r→∞

= nα0

(
1 +

∣∣∣∇xα∣∣∣
∞
z/xα

)
, nα0 = nα∞

∣∣∣
θ=±π/2

.

Ural State University, Ekaterinburg 620083. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika,
Vol. 42, No. 3, pp. 72–83, May–June, 2001. Original article submitted March 10, 2000; revision submitted July 11,
2000.

0021-8944/01/4203-0445 $25.00 c© 2001 Plenum Publishing Corporation 445



Fig. 1. Geometry of the problem.

If the Mach number is small, the velocity distribution functions of the molecules can be written in linearized
form

fα = fα0

(
1 +

∣∣∣∇xα∣∣∣
∞
z/xα + 2cαzVα∞ + Φα), (1.1)

where fα0 = nα0(mα/(2πkT ))3/2 exp(−c2α), cα = (mα/(2kT ))1/2vα, Vα∞ = (mα/(2kT ))1/2V∞ � 1 is the nondi-
mensional mass-average velocity of the mixture (Mach number with accuracy up to a constant factor), Φα is the
unknown perturbation of the distribution function for molecules of the species α, vα and mα are the velocity and
mass of molecules of the species α T is the temperature of the mixture, and k is the Boltzmann constant.

To find the function Φα, we use the linearized Boltzmann equation (see, e.g., [13])

vα · ∇Φα +
vαz

∣∣∣∇xα∣∣∣
∞

xα
=
∑
β

Lαβ(Φα). (1.2)

For the further calculations, we employ the approximating collision integral of the second approximation
[14], which has the form

L
(2)
αβ(Φα) = −γαβΦα + γαβνα + 2cαi

[
γαβu

′
αi −

(
u′αi −

√
mα/mβ u

′
βi

)
ν

(1)
αβ

]
+ 2cαicαj [(γαβ − ν(3)

αβ )παij + ν
(4)
αβπβij ]. (1.3)

Here

να =
nα − nα∞

nα0
= π−3/2

∫
exp(−c2α)Φα dcα, u′αi = uαi − Vα∞δiz = π−3/2

∫
exp(−c2α)cαiΦα dcα,

παij =
Pαij
2pα0

= π−3/2

∫
exp(−c2α)

(
cαicαj −

δijc
2
α

3

)
Φα dcα,

γαβ are the effective frequencies of collision between molecules of the species α and β, να is the relative perturbation
of the number density of molecules of the species α near the aerosol particle, u′αi is the nondimensional velocity of the
species α relative to the hydrodynamic velocity of the incoming flow, which has the meaning of the nondimensional
rate of diffusion of the species α away from the particle, παij is the dimensional nondivergent stress tensor for the
species α, pα0 = nα0kT is the equilibrium partial pressure, and δiz is the Kronecker delta. The expressions for the
frequencies ν(1)

αβ , ν(3)
αβ , and ν

(4)
αβ are given in [14].

In the extreme case of small Knudsen numbers, the model collision integral (1.3) describes diffusion and
internal friction in a gas mixture in exact accordance with the first approximation of the Chapman–Enskog theory
[13], which should ensure an adequate description of diffusiophoresis. Expression (1.3) takes into account that
gas temperature is uniform over the entire region up to the particle surface and the temperatures of the mixture
components are identical. Hence, we can restrict ourselves to the second approximation of the model collision
operator [14]. Of course, the one-temperature approximation is valid only within the framework of linear theory
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(see, e.g., [15]). At the same time, although the temperatures of the components are identical away from the
particle, they may be different near the particle provided that the thermal polarizations of the components are
different. However, the thermal polarization of the gas and the particle, which is due to isothermal heat transfer in
the gas and the finite thermal conductivity of the particle, makes an insignificant contribution (about 0.2%) to the
momentum transfer [16] and, therefore, is not considered in the present paper.

At large distances from the particle, its effect on the state of the gas weakens. For r →∞, the perturbation
function Φα∞ = Φα

∣∣∣
r→∞

is spatially homogeneous, i.e., ∇Φα∞ = 0. Therefore, the solution of Eq. (1.2) without

the first term on the left side and with the collision integral (1.3) has the form

Φα∞ = 2cαzu′α∞, u′α∞ = − 1

2ν(1)
αβ

ρβ
ρ

(2kT
mα

)1/2 ∣∣∣∇xα∣∣∣
∞

xα
, ρα = nαmα, ρ = ρ1 + ρ2.

In addition, away from the particle, Eqs. (1.2) and (1.3) lead to the following relationship between the diffusion
rates:

ν
(1)
αβ

[
u′α∞ −

(mα

mβ

)1/2
u′β∞

]
= −1

2

(2kT
mα

)1/2 ∣∣∣∇xα∣∣∣
∞

xα
. (1.4)

We note that expression (1.4) coincides with the result of the first Chapman–Enskog approximation [13].
We introduce the notation Φα = Φα∞ + hα, where hα is the perturbation of the distribution function for

molecules of the species α due to the presence of the particle. In this case, the partial velocities are written as

u′αi = u′α∞δiz + wαi, wαi = π−3/2

∫
cαi exp (−c2α)hα dcα,

where wαi is the perturbation of the nondimensional velocity u′αi near the particle.
The functions hα satisfy the following system of kinetic equations:

vα · ∇hα =
2∑

β=1

L
(2)
αβ(hα) (α = 1, 2). (1.5)

The form of L(2)
αβ(hα) follows from expression (1.3) after replacement of u′αi by wαi.

As the boundary conditions, we assume that the molecules of both components are diffusely scattered on
the particle surface with the Maxwell velocity distribution

f+
α = fα0[1 +Aα(θ0)], (1.6)

where Aα are reflection parameters that describe the number densities of the scattered molecules and depend on
the polar angle θ0 (Fig. 1).

With allowance for expressions (1.1) and (1.6), the boundary conditions for the perturbation functions have
the form

h+
α = Aα(θ0)−

( ∣∣∣∇xα∣∣∣
∞

/
xα

)
R0 cos θ0 − 2cαzVα∞ − 2cαzu′α∞, cαr > 0. (1.7)

The boundary-value problem (1.5)–(1.7) is linear and includes two independent generalized forces
∣∣∣∇x1

∣∣∣
∞
R0

and V1∞. Therefore, we can write

hα = hDα

∣∣∣∇x1

∣∣∣
∞
R0 + hFαV1∞, Aα = ADα

∣∣∣∇x1

∣∣∣
∞
R0 +AFαV1∞. (1.8)

The macroscopic quantities are represented similarly:

να = νDα

∣∣∣∇x1

∣∣∣
∞
R0 + νFα V1∞, wαi = wDαi

∣∣∣∇x1

∣∣∣
∞
R0 + wFαiV1∞,

(1.9)

παij = πDαij

∣∣∣∇x1

∣∣∣
∞
R0 + πFαijV1∞.

Substituting (1.8) and (1.9) into Eqs. (1.5) and (1.7) and selecting terms proportional to
∣∣∣∇x1

∣∣∣
∞
R0 and

V1∞, we obtain
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vα · ∇hD,Fα =
∑
β

L
(2)
αβ(hD,Fα ); (1.10)

hD+
α = ADα +

(−1)α

xα

[
cos θ0 −

cαz

ν
(1)
αβ

ρβ
ρ

1
R0

(2kT
mα

)1/2
]

; (1.11)

hF+
α = AFα − 2cαz(mα/m1)1/2. (1.12)

The reflection parameters ADα and AFα are obtained from the nonpenetration conditions, which imply the
equality of number flows for reflected and incoming molecules on the particle surface:∣∣∣ND,F+

α

∣∣∣
r=R0

=
∣∣∣ND,F−

α

∣∣∣
r=R0

. (1.13)

Thus, the complete problem is split into two problems:
1) the problem of the diffusion force acting on the particle which is at rest relative to the center of mass of the gas
mixture [Eq. (1.10) with the superscript D and Eq. (1.11)];
2) the problem of the drag force of the particle in a homogeneous flow of the gas mixture [Eq. (1.10) with the
superscript F and Eq. (1.12)].

We assume that the concentration of one of the mixture components is small n1 � n2. It can be shown that
neglect of the first-order terms O(n1/n2) reduces problem 2 to the problem of the drag force in a single-component
gas (second component of the mixture), whose solution is known (see, e.g., [16]). Thus, it remains to calculate the
diffusion force.

The next simplification is related to the assumption on the ratio of molecular weights of the mixture com-
ponents. Let us consider two models:
1) a Lorentzian mixture, in which m1/m2 � 1;
2) a Rayleigh mixture in which m1/m2 � 1.

We write the effective collision frequencies in the integral L(2)
αβ in the forms γ12 = ν

(3)
12 and γ22 = ν

(3)
22 − ν

(4)
22 .

This allows us to eliminate terms containing the stress tensor from expression (1.3) and thus simplify the calculations.
We note that writing the effective frequencies in different form, we obtain somewhat different results for the desired
macroparameters at intermediate Knudsen numbers. However, from the method of constructing approximating
collision integrals [14] it follows that the difference is not large. Margilevskii and Chernyak [17] showed this by
solving the problem of vaporization of a drop. Thus, depending on the form of the effective collision frequencies
there may be small quantitative differences (several percent) in the calculated values of the diffusion force.

With allowance for the aforesaid, Eqs. (1.10) become

c1 ·
∂

∂r1
h1 = −h1 + ν1 + 2(1− ϕ(1)

12 )(c1rw1r + c1θw1θ); (1.14)

c2 ·
∂

∂r2
h2 = −h2 + ν2 + 2(c2rw2r + c2θw2θ), (1.15)

where c1 and c2 are the nondimensional velocities of molecules of species 1 and 2, ϕ(1)
12 = ν

(1)
12 /γ12, r1 =

rγ12(m1/(2kT ))1/2, and r2 = rγ22(m2/(2kT ))1/2. For brevity, the superscript D is omit below.
We note that Eqs. (1.14) and (1.15) differ for the two models of the gas mixture in values of the frequencies

γ12, γ22, and ν
(1)
12 .

The diffusion force is determined by the total momentum transferred to the particle by molecules of the gas
mixture upon collisions:

FD = nz

∫
dS
∑
α

∑
±

∫
mαvαzvαrf

±
α

∣∣∣
r=R0

dvα = nz

∫
dS
∑
α

mα

[ ∫
vr>0

vαzvαrfα0

(
1 +Aα

∣∣∣∇x1

∣∣∣
∞
R0

)
dvα

+
∫

vr<0

vαzvαrfα0

(
1 + 2cαzu′α∞ +

∣∣∣∇xα∣∣∣
∞

xα
R0 cos θ0 + hα

∣∣∣∇x1

∣∣∣
∞
R0

)
dvα

]
. (1.16)

Here nz is a unit vector along the OZ axis, S is the particle surface area, and f−α is the distribution function for
molecules of species α that are incoming on the particle surface.
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The stationary rate of diffusiophoresis UD is determined from the balance of the forces acting on the particle:
FD + F F = 0 (FD is the diffusion force and F F is the viscous drag force of the medium).

2. Method of Solution. The kinetic equations (1.14) and (1.15) were integrated along the characteristics
[18] with allowance for boundary conditions (1.11) and were reduced to the following system of integral equations
for the macroparameters of the mixture:

να = π−3/2

∫
ω0

Xα0
23 dω + π−3/2

∫
V ′

Xα
12∣∣∣rα − r′α∣∣∣2 dr

′
α,

wαr = π−3/2

∫
ω0

Xα0
34 Ω0r dω + π−3/2

∫
V ′

Xα
23Ωr∣∣∣rα − r′α∣∣∣2 dr

′
α, (2.1)

wαθ = π−3/2

∫
ω0

Xα0
34 Ω0θ dω + π−3/2

∫
V ′

Xα
23Ωθ∣∣∣rα − r′α∣∣∣2 dr

′
α.

Here integration is performed along the solid angle ω0 at which the sphere can be seen from a point with radius
vector r and over the space V ′ whose points are connected to the radius vector r without intersection of the sphere.
The quantities Xα0

kl and Xα
kl are defined as follows:

X10
kl = A1(θ0)Ik( |r1 − r01| )−

1
x1

[
Ik( |r1 − r01| ) cos θ0 −

Ω0z

ν
(1)
12 R0

(2kT
m1

)1/2
Il( |r1 − r01| )

]
,

X20
kl = A2(θ0)Ik( |r2 − r02| ) +

[
Ik( |r2 − r02| ) cos θ0 −

Ω0z

ν
(1)
21 R0

ρ1

ρ

(2kT
m2

)1/2
Il( |r2 − r02| )

]
,

X1
kl = ν1Ik( |r1 − r′1| ) + 2(1− ϕ(1)

12 )(w1rΩr′ + w1θΩθ′)Il( |r1 − r′1| ),

X2
kl = ν2Ik( |r2 − r′2| ) + 2(w2rΩr′ + w2θΩθ′)Il( |r2 − r′2| ).

Here In(z) =

∞∫
0

cn exp (−c2 − z/c) dc and the directing-vector components Ω = (r − r′)/|r − r′| are determined

in [16].
System (2.1) is closed by the following integral nonpenetration conditions on the particle surface for each of

the mixture components, which follow from Eqs. (1.13):

1
2

∫
S

(A1(θ0)
π1/2

− 1
2
H1

ϕ
(1)
12

cos θ0

)
ds

= π−3/2

∫
V0

dr1

∫
ω0

dω[ν1I2( |r1 − r01| )− 2(1− ϕ(1)
12 )(w1rΩ0r + w1θΩ0θ)I3( |r1 − r01| )]; (2.2)

1
2

∫
S

(A2(θ0)
π1/2

+
1
2
H1

ϕ
(1)
12

x1

(m1

m2

)1/2
cos θ0

)
ds

= π−3/2

∫
V0

dr2

∫
ω0

dω[ν2I2( |r2 − r02| )− 2(w2rΩ0r + w2θΩ0θ)I3( |r2 − r02| )]. (2.3)

Here H1 = (x1R0γ12)−1/2(2kT/m1)1/2 and V0 is the full space around the sphere.
The expressions for the diffusion force obtained from Eq. (1.16) with allowance for (1.14), (1.15), and (1.11)

for Lorentzian (subscript L) and Rayleigh (subscript R) mixtures have the form

FL = n10kTR0

∣∣∣∇x1

∣∣∣
∞

{
− 8π1/2

3
H1

ϕ
(1)
12

R2
0 −

1
2

∫
S

A1(θ0) cos θ0 dS − 2π−3/2 2kT
m1

1
γ2

12

×
∫
V0

dr1

∫
ω0

dωΩ0Z [ν1I3( |r1 − r01| )− 2(1− ϕ(1)
12 )(w1rΩ0r + w1θΩ0θ)I4( |r1 − r01| )]

}
, (2.4)
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FR = n20kTR0

∣∣∣∇x1

∣∣∣
∞

{
8π1/2

3
x1

(m1

m2

)1/2 H1

ϕ
(1)
12

R2
0 −

1
2

∫
S

A2(θ0) cos θ0 dS − 2π−3/2 2kT
m2

1
γ2

22

×
∫
V0

dr2

∫
ω0

dωΩ0Z [ν2I3( |r2 − r02| )− 2(w2rΩ0r + w2θΩ0θ)I4( |r2 − r02| )]

}
, (2.5)

where dS = R2
0 sin θ0 dθ0 dϕ0, |r01| = R0(m1/(2kT ))1/2γ12, and |r02| = R0(m2/(2kT ))1/2γ22.

As might be expected, for a Lorentzian mixture, the diffusion force is determined only by the macroscopic
parameters only the first component, and for a Rayleigh mixture, it is determined only by the second component.
This implies that to calculate FL, it suffices to solve Eqs. (2.1) for α = 1 using Eq. (2.2). To calculate the diffusion
force for a Rayleigh mixture FR, it suffices to solve Eq. (2.1) for α = 2 using Eq. (2.3).

The system of integral equations (2.1) was solved by the Bubnov–Galerkin method, whose applicability to
Fredholm integral equations of the second kind was discussed in [19]. The effectiveness of this method lies in the
fact that it converges on the average, i.e., it allows one to calculate the diffusion force with specified accuracy, using
only approximations of coordinate dependences of the gas density and velocity.

If the angular dependence of the macroscopic quantities is specified by a series in Legendre polynomials,
then, by virtue of the orthogonality of the polynomials, expression (1.16) implies that only terms corresponding
to first-order polynomials make a contribution to the diffusion force. Then, an angular dependences of the form
να ∼ cos θ, wαr ∼ cos θ, wαθ ∼ sin θ, and Aα ∼ cos θ0, obtained in calculations of the diffusion force in the free-
molecular [20] and hydrodynamic [6] regimes and satisfying the conservation laws, can be used for intermediate
Knudsen numbers as well. It remains to approximate the dependence of the unknown macroparameters only on the
radial coordinate r.

The perturbations of the gas macroparameters due to the presence of the particle should disappear at large
distances from the particle. This condition and the macroscopic conservation laws are satisfied for the systems of
basis functions {r−2k} for perturbations of the partial densities να and {r−(2k−1)} for the velocities wαr and wαθ,
where k = 1, . . . , N (N is the approximation order).

The free terms of Eqs. (2.1) already contain accurate free-molecular values for the sought macroparameters.
Therefore, specifying trial functions for να and wα by the form of the hydrodynamic solution of the problem,
one obtains fairly accurate results for the diffusion force over the entire range of Kn. One can show that the
hydrodynamic limit [6] corresponds to the second approximation (N = 2) of the Bubnov–Galerkin method. In this
case, the approximating functions satisfying the continuity equations and equations of motions have the form

να = Cα1
R2
α

r2
α

cos θ, wαr = −Rα
rα

[
1− Cα2

(
1− R2

α

r2
α

)]
cos θ,

(2.6)

wαθ =
1
2
Rα
rα

[
1− Cα2

(
1 +

R2
α

r2
α

)]
sin θ, Aα = Cα3 cos θ0,

where Rα = |r0α| and Cαi are unknown constants (in this case, the subscript α = 1 corresponds to the approximation
of a Lorentzian mixture and the subscript α = 2 corresponds to a Rayleigh mixture).

When the problem is solved in a higher approximation (N = 3) to study the rate of convergence of the
Bubnov–Galerkin method, the volume of calculations increases considerably. Therefore, such a study was not
performed. However, the experience of solving similar problems (see, e.g., [16, 17]) shows that the choice of trial
functions in the form (2.6) ensures exact results in the Knudsen and hydrodynamic limits and gives an error less
than 3% for intermediate Kn.

Substituting approximations (2.6) into the system of integral equations (2.1) and requiring that the expres-
sions obtained be orthogonal to each of the basis functions (2.6), we obtain a system of algebraic equations that
define the unknown constants Cαi in approximations (2.6):

3∑
j=1

αijC
α
i = αi (i = 1, 2, 3). (2.7)

Having determined the quantities Cαi by solving Eqs. (2.7) with allowance for expressions (2.4) and (2.5),
we obtain the diffusion force for both models for the gas mixture:

450



FL = n10kT
∣∣∣∇x1

∣∣∣
∞
R0

{
− 8π1/2

3
R0

(2kT
m1

)1/2 1

ν
(1)
12 x1

− 2
3
πR2

0C
1
3−

2kT
m1

1
γ2

12

[C1
1β1 + 2(1− ϕ(1)

12 )(β′2+C1
2β2)]

}
; (2.8)

FR = n20kT
∣∣∣∇x1

∣∣∣
∞
R0

{
8π1/2

3
R0

(2kT
m2

)1/2 1

ν
(1)
12

− 2
3
πR2

0C
2
3 −

2kT
m2

1
γ2

22

[C2
1β1 + 2(β′2 + C2

2β2)]

}
.

The expressions for the Galerkin coefficients αij and αi, and the quantities βi and β′i, which depend on
Knudsen number are cumbersome, and, therefore, are not given here. Calculating them at arbitrary Knudsen
number is the most laborious part of the solution of the problem. We note that the computation error for the
Galerkin coefficients do not exceed 0.5%.

3. Discussion of Results. The expressions for the force and rate of diffusiophoresis at large and small
Knudsen numbers can be obtained by asymptotic expansions of the Galerkin coefficients. At Kn� 1, we have

FL = −8π1/2

3

(
1 +

π

8

)
R2

0n20(2kT )1/2m
1/2
1 D12

∣∣∣∇x1

∣∣∣
∞

(
1− 0.324

KnL

)
, (3.1)

FR =
8π1/2

3

(
1 +

π

8

)
R2

0n20(2kT )1/2m1m
−1/2
2 D12

∣∣∣∇x1

∣∣∣
∞

(
1− 0.324

KnR

)
, (3.2)

where, according to the first Chapman–Enskog approximation [13], the interdiffusion coefficient is D12 =
kT/(m1ν

(1)
12 ). In the case of Lorentzian mixture (KnL) and Rayleigh mixture (KnR), the expressions for Knudsen

numbers have the form Kn = π1/2/(2R). Here for solid spherical molecules, we have

RL = γ12

( m1

2kT

)1/2
R0 =

16π1/2

5
nR0d

2
12, RR = γ22

( m2

2kT

)1/2
R0 =

16
5

(π
2

)1/2
nR0d

2
2.

For diffusion of the first component through the second fixed component, we have

RSD =
16π1/2

5
m

1/2
2 (5/3 +m2/m1)

(m1 +m2)3/2
nR0 d

2
12.

We note that the results (3.1) and (3.2) are new. For Kn→∞, they agree with the data of [1–4] for Rayleigh and
Lorentzian mixtures.

Using the results of [16] for the drag force at Kn� 1

FF =
16π1/2

3

(
1 +

π

8

)
R2

0n20kT
( m2

2kT

)1/2
V ∞

(
1− 0.324

KnR

)
, (3.3)

for the diffusiophoresis rate UD = −V ∞, we obtain the following relations:

UL = −
(m1

m2

)1/2
D12

∣∣∣∇x1

∣∣∣
∞

(
1− 0.095

KnL

)
, UR =

m1

m2
D12

∣∣∣∇x1

∣∣∣
∞
. (3.4)

We note that for Kn → ∞, expressions (3.4) agree with the results of [20, 21] at x1 � 1 for the cases
m1/m2 � 1 and m1/m2 � 1. As shown by calculations of the diffusiophoresis force and rate over the entire range
of Knudsen numbers (see Table 1), expressions (3.1), (3.2), and (3.4) can be used for Kn > 2, and the error in this
case does not exceed 2–5%.

For the slip regime, by asymptotic expansion of the Galerkin coefficients in the small parameter Kn� 1, we
also obtained expressions for the diffusiophoresis force and rate. In this case,

FL,R = −6πηR0σ
L,R
12 D12

∣∣∣∇x1

∣∣∣
∞

(3.5)

(η is the viscosity of the gas mixture). For the hydrodynamic velocity of the mixture, the diffusion slip coefficients
σ12 take the form

σL12 = γ22/γ12, σR12 = −m1/m2, (3.6)

and in the case of a Lorentzian mixture with molecules treated as solid spheres with effective diameters d1 and d2,
we have γ22/γ12 = (m1/(2m2))1/2(d2/d12)2, where d12 = (d1 + d2)/2.

We note that expressions (3.6) result from gas-kinetic analysis and agree with the expressions given in [6],
provided that x1 � 1 and passage to the limit for molecular weights is performed.
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TABLE 1
Calculated Diffusiophoresis Force and Rate

Normalized to Free-Molecular Values for Intermediate Knudsen Numbers

R = (π1/2/2)Kn−1 F ∗L U∗L (d1 ≈ d2) F ∗R U∗R

10 0.129 1.000 0.127 0.977

9 0.142 1.000 0.139 0.979

8 0.157 1.000 0.154 0.975

7 0.177 1.000 0.174 0.976

6 0.202 1.000 0.199 0.980

5 0.234 0.996 0.236 1.000

4 0.280 1.000 0.281 0.996

3 0.347 1.000 0.344 0.986

2.5 0.394 1.000 0.390 0.985

2 0.455 0.998 0.451 0.989

1.75 0.493 1.000 0.490 0.994

1.5 0.538 1.000 0.534 0.994

1.25 0.589 0.998 0.585 0.997

1.0 0.651 1.000 0.652 1.010

0.8 0.709 1.000 0.705 1.000

0.75 0.724 1.000 0.725 1.010

0.6 0.774 1.001 0.769 0.999

0.5 0.809 1.000 0.804 0.998

0.4 0.845 0.998 0.841 0.995

0.25 0.905 1.000 0.907 1.000

0.2 0.925 1.000 0.923 0.995

0.1 0.963 1.000 0.962 0.992

0.08 0.971 1.000 0.968 0.990

0.075 0.973 1.000 0.970 0.991

0.06 0.978 1.000 0.975 0.990

0.05 0.982 0.999 0.981 0.993

Using the Stokes formula FF = 6πηV ∞R0 for the drag force at Kn � 1, we obtain the following relations
for the diffusiophoresis rate:

UL,R = −σL,R12 D12

∣∣∣∇x1

∣∣∣
∞
. (3.7)

From relations (3.1)–(3.7) it follows that for Lorentzian mixtures, the diffusiophoresis force and rate are in
opposition to the concentration gradient, for Rayleigh mixtures, they are directed along the concentration gradient
of the first component (because σR12 < 0).

At intermediate Knudsen numbers, we performed numerical calculations of the diffusion force normalized to
the free-molecular value:

F ∗L,R(KnL,R) = FL,R(KnL,R)/FL,R(KnL,R →∞).

Then, we calculated the normalized rate of diffusiophoresis

U∗L,R(KnL,R) = F ∗L,R(KnL,R)/F ∗F (KnL,R),

where F ∗F (KnL,R) is the drag force normalized to the free-molecular value [16]. The calculation results are given in
Table 1.

Figure 2 shows the dependences of the diffusiophoresis force and rate on KnL for a Lorentzian mixture. For
a Rayleigh mixture, the results are identical if KnL replaced by KnR. From the calculations it follows that the
normalized rate of diffusiophoresis U∗L,R practically does not depend on Kn. This conclusion agrees qualitatively
with the results of the method of “giant molecules” [10]. The indistinct minimum for the diffusiophoresis rate at
Kn ≈ 0.1–1.0, noted in [10] for equimolar mixtures, was not revealed within the calculation error.

Let us consider the particular case of diffusion of one component of the mixture through the second fixed
component. This scheme was implemented in experimental studies of the diffusiophoresis rate [4, 11, 12]. It can be
shown that for diffusion of one component of low concentration (x1 � 1) through the other fixed component at any
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Fig. 2. Dependences of the normalized force F ∗L [1 by Eq. (2.8) and 2 by Eq. (3.1)] and rate of diffusio-
phoresis U∗L (3) on KnL for a Lorentzian mixture.

Fig. 3. Normalized rate of diffusiophoresis U∗SD versus Kn for diffusion of one component through the
second fixed component: points 1 and 2 refer to experimental data of [11] and [12], respectively, and points
3 refer to numerical calculations.

ratios of molecular weights, the form of the kinetic equation (2.1) for the first component does not change, only the
expressions for the frequencies ν(k)

αβ change, and the kinetic equation for the second component does not contribute
to the diffusion force. Thus, for this diffusion scheme, one can use the solution of the problem for a Lorentzian
mixture but with different values of the frequencies ν(k)

αβ [14].
In the free-molecular limit, we obtain

FSD = −(8π1/2/3)(1 + π/8)R2
0n(2kT )1/2m

1/2
1 D12

∣∣∣∇x1

∣∣∣
∞
, USD = −(m1/m2)1/2D12

∣∣∣∇x1

∣∣∣
∞
, (3.8)

which agrees with the result (3.1) at Kn → ∞ for a Lorentzian mixture in the case of constant-pressure diffusion.
We note that relations (3.8) follow from the results of [11] at x1 � 1 and any ratio of molecular weights.

In the slip regime at Kn � 1, we have FSD = −6πηR0σ12D12

∣∣∣∇x1

∣∣∣
∞

and USD = −σ12D12

∣∣∣∇x1

∣∣∣
∞

, where

σ12 = γ22/γ12. For molecules treated as solid spheres at an arbitrary ratio of molecular weights, we have

γ22

γ12
=
( d2

d12

)2 (m1 +m2)3/2

(2m1)1/2m2

1
m2/m1 + 5/3

.

At intermediate Knudsen numbers, the calculated values of the diffusiophoresis force and rate agree with
the results for the model of a Lorentzian mixture in the constant-pressure diffusion scheme if KnL is replaced by
KnSD (see Table 1).
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A comparison of theoretical and experimental data is presented in Fig. 3. The figure shows measured
diffusiophoresis rates for droplets of M300 silicone oil in the case of diffusion of water vapor in fixed nitrogen
(m1/m2 ≈ 0.64) [11] and for droplets of liquid petrolatum in the case of diffusion of water vapor in air (m1/m2 ≈
0.62) [12]. In these experiments, the theoretical condition x1 � 1 was used. Calculated values of the normalized
rate of diffusiophoresis U∗D are also given here. The Knudsen number Kn = l2/R0 is determined from the average
free path of molecules of the fixed component l2. The theoretical results are in good agreement with experiments.
The abnormal increase in the normalized rate at Kn < 0.5 in the experiment of [12], in our opinion, is due to the
fact that the jet procedure does not distinguish between diffusion and convective transport of particles at small
Knudsen numbers (see, e.g., [22]). The results of investigation [11] using a Millikan capacitor appear to be free of
this disadvantage [22]. The systematic 10–20% excess of experimental data above calculation results over the entire
explored range of Knudsen numbers can be attributed to incomplete accommodation of the momentum of molecules
on the particle surface, which was ignored in theory.
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